

Franz-Pichler-Strasse 30 8160 Weiz, Austria Phone +43 316 876-3000 Fax +43 316 876-3010

Data sheet

31.01.2018, v1.0

The patented PyzoFlex[®] technology is an affordable, printable sensor technology that can be implemented on an industrial scale. It allows the large-scale and accurate measurement of temperature and pressure changes in objects and their environment based on the pyro- and/or piezoelectric effect. The technology is based on ferroelectric polymers, which are applied using a cost-effective screen printing method. These films can detect localized pressure and temperature changes with high precision. The performance of the PyzoFlex[®] technology within specific applications strongly depends on the mechanical design (conversion of external stimuli into tiny mechanical deformations) and therefore cannot be generalised. All the data presented within this data sheet are based on measurements of PyzoFlex[®]-sensors composed of the ferroelectric copolymer PVDF:TrFE = 70:30 printed on PET-substrates.

Measured physical properties of screen-printed PyzoFlex [®] sensors based on PVDF:TrFE=70:30						
	min.	typical	max.	Unit		
Recommended poling field	100	150	200	MV/m		
Displacement	50	60	66	mC/m ²		
Coercive field @ 10Hz	46	55	60	MV/m		
Pyroelectric coefficient @ 25°C	28,5	34	37,5	μC/m²K		
Pyroelectric coefficient from -90°C to +90°C	12 — 52	15 — 62	16 — 67	μC/m²K		
Piezoelectric coefficient d ₃₃	-21 -25		-27,4	pC/N		
Tested pressure range*		N/cm ²				
Electromechanic coupling coefficient k_{33} (1Hz — 1kHz)*	0,15	0,16	0,17	-		
Curie Temperature	103	104	130	°C		
Standard PVDF:TrFE layer thickness	3 5		15	μm		
Capacity at standard layer thickness	2 1,33		0,45	nF/cm ²		
Capacity (thickness normalized)	6,21 6,64		6,79	nF/cm ² µm ⁻¹		
Permittivity @ 1kHz (poled)	7,2 7,5		7,9	-		
Permittivity @ 1kHz (unpoled)	10,9 11,4		12,0	-		
Frequency response**	100µ — 1M			Hz		
Tunable properties based on polymer-composition						
VDF content of PVDF:TrFE	55, 70, 80 %mol					
Curie temperature	62 – 132 °C			°C		
Coercive field (quasi-static)	46 — 57 mV/m			mV/m		
Displacement	48 — 80 mC/m ²					
Piezoelectric coefficient d ₃₃	-26 — -30 pC/N					

* Due to the flexibility of PyzoFlex[®], the conversion of force to mechanical deformation can be enhanced by employing appropriate mechanical design.

** The parameter limits are determined by available measurement equipment and its measurement ranges.

Franz-Pichler-Strasse 30 8160 Weiz, Austria

Phone +43 316 876-3000 Fax +43 316 876-3010

Standard PyzoFlex[®] build up by screen-printing:

Substrate	1 st Electrode	Active Material	2 nd Electrode	Connections
	111			333
Plastic, paper, textile, glass, metal, transfer foils	PEDOT: PSS (conductive, transparent polymer)	Copolymer: PVDF:TrFE (patented synthesis)	PEDOT:PSS (for semi- transparent sensors) Carbon	Ag lines for connection to electronics

Ageing analysis of PyzoFlex[®] A set of tests was used to determine if the material has potential for automotive applications. These tests are summarized in the following table:

Test ID	Test name	Description	
TS	Temperature Storage	Keeping samples at 105°C for 24 hours	
HW	Hot Water Test	Keeping samples in water at 99.9°C for 1 hour	
1000H	1000 Hours Test	Keeping samples at 85°C and 85% humidity for 1000 hours (42 days)	
ThSh	Thermal Shock	The samples are kept at alternating low and high temperatures. During the cold phase the samples are kept at -40°C for 30 min. During the hot phase they are kept at +85°C for 30 min. The test lasts 11 days.	
UP	Uniaxial Pressure Test	A static pressure of 0.1 MPa is applied for 240 hours (10 days) at 85°C	
MA	Multiple Mechanical Actu- ation Test	106 actuations are performed at a frequency of 1Hz. Within each actuation the pressure of p=0.01MPa at room temperature is applied.	
Shr.	Shrinkage Test	A sample of a fixed size is placed into an oven at 90°C for 30 min and the ratio of the size after and before the test is determined.	
FI.	Flammability TestThe sample stripe of a prescribed length is set afire; the speed of the flame f is measured and classified by integers from 0 to 5.		

In addition to the tests described in the previous table, the ageing of the sensor is checked by measuring it's piezoelectric modulus and defining the aging factor as follows: $a_{a}(a_{fter}) = a_{a}(b_{efore})$

$$AF = \frac{d_{33}^{(after)} - d_{33}^{(before)}}{d_{33}^{(before)}} \times 100$$

where AF is the ageing factor and d_{33} is the piezoelectric modulus of the sensor. The superscripts "before and "after" indicate, if the corresponding data is measured before or after the ageing process.

Test ID	Aging factor [%]	Acceptability [Yes/No]
TS	-3.2 ± 0.4	Yes
HW	2.3 ± 0.1	Yes
1000H	6 ± 0.6	Yes
ThSh	-8.7 ± 0.8	Yes
UP	-2.8 ± 0.2	Yes
MA	4.8 ± 0.5	Yes
Shr	0	Yes
Fl.	Self-extinguishing.non- flammable	Yes

According to the tested parameters PyzoFlex[®] has potential for automotive applications.

materials@joanneum.at www.joanneum.at/materials